Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments.

نویسندگان

  • Thomas-C Jagau
  • Anna I Krylov
چکیده

The theoretical description of electronic resonances is extended beyond calculations of energies and lifetimes. We present the formalism for calculating Dyson orbitals and transition dipole moments within the equation-of-motion coupled-cluster singles and doubles method for electron-attached states augmented by a complex absorbing potential (CAP-EOM-EA-CCSD). The capabilities of the new methodology are illustrated by calculations of Dyson orbitals of various transient anions. We also present calculations of transition dipole moments between transient and stable anionic states as well as between different transient states. Dyson orbitals characterize the differences between the initial neutral and final electron-attached states without invoking the mean-field approximation. By extending the molecular-orbital description to correlated many-electron wave functions, they deliver qualitative insights into the character of resonance states. Dyson orbitals and transition moments are also needed for calculating experimental observables such as spectra and cross sections. Physically meaningful results for those quantities are obtained only in the framework of non-Hermitian quantum mechanics, e.g., in the presence of a complex absorbing potential (CAP), when studying resonances. We investigate the dependence of Dyson orbitals and transition moments on the CAP strength and illustrate how Dyson orbitals help understand the properties of metastable species and how they are affected by replacing the usual scalar product by the so-called c-product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular ionization energies and ground- and ionic-state properties using a non-Dyson electron propagator approach.

An earlier proposed propagator method for the treatment of molecular ionization is tested in first applications. The method referred to as the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator represents a computationally promising alternative to the existing Dyson ADC(3) method. The advantage of the nD-ADC(3) scheme is that the (N+/...

متن کامل

Electronic transition dipole moments and dipole oscillator strengths within Fock-space multi-reference coupled cluster framework: an efficient and novel approach.

Within the Fock-space multi-reference coupled cluster framework, we have evaluated the electronic transition dipole moments, which determine absorption intensities. These depend on matrix elements between two different wave functions (e.g., ground state to the excited state). We present two different ways, to calculate these transition moments. In the first method, we construct the ground and e...

متن کامل

Semiclassical wave packet study of ozone forming reaction.

We have applied the semiclassical wave packet method (SWP) to calculate energies and lifetimes of the metastable states (scattering resonances) in a simplified model of the ozone forming reaction. All values of the total angular momentum up to J=50 were analyzed. The results are compared with numerically exact quantum mechanical wave packet propagation and with results of the time-independent W...

متن کامل

Dyson orbitals, quasi-particle effects and Compton scattering

Dyson orbitals play an important role in understanding quasi-particle effects in the correlated ground state of a many-particle system and are relevant for describing the Compton scattering cross section beyond the frameworks of the impulse approximation (IA) and the independent particle model (IPM). Here we discuss corrections to the Kohn–Sham energies due to quasi-particle effects in terms of...

متن کامل

Relativistic many - body calculation of energies , lifetimes , hyperfine constants , and polarizabilities in 7

The excitation energies of ns, np, nd, and nf n 6 states in neutral lithium are evaluated within the framework of relativistic many-body theory. First-, second-, third-, and all-order Coulomb energies and firstand second-order Breit corrections to energies are calculated. All-order calculations of reduced matrix elements, oscillator strengths, transition rates, and lifetimes are given for level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 5  شماره 

صفحات  -

تاریخ انتشار 2016